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This paper is concerned with the investigations of viscoelastic material (VEM) effects on
active constrained layer (ACL) based structures. Specific interests are on how the VEM
parameters will influence the passive damping ability, the active action authority, and their
combined effect in an ACL configuration. Using a beam example, the study has identified
the VEM parameter regions that will provide the best active–passive hybrid actions. The
results of this research can be used to develop guidelines to synthesize ACL structures that
will outperform both the purely passive and active systems.
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1. BACKGROUND

Active constrained layer (ACL) damping treatments generally consist of a piece of
viscoelastic damping material (VEM) sandwiched between an active piezoelectric layer and
the host structure. Such systems have been studied by various researchers [1–18]. It has
been recognized that the active piezoelectric action in an ACL configuration will enhance
the viscoelastic layer damping ability by increasing its shear angle during operation [6].
That is, the ACL can enhance the system damping when compared to a structure with
traditional passive constrained layers (PCL). On the other hand, Van Nostrand [13]
mentioned that the active actions will be degraded by the passive constrained layer. Bailey
et al. [2] also stated that it is more effective to apply the piezoelectric materials directly
on the structure (purely active case without the viscoelastic layer). Liao and Wang [18]
recently illustrated that the viscoelastic layer will reduce the direct control authorities from
the active source to the host structure, due to the reduction of transmissibility. Therefore,
under some conditions, the ACL configuration could require more control effort while
achieving less vibration reduction when compared to a purely active system (zero VEM
thickness).

2. PROBLEM STATEMENT AND OBJECTIVE

From the above discussion, one can conclude that the overall performance of the ACL
treatment, comparing it to a purely active configuration, depends on the combined effect
of two factors. That is, (1) how much passive damping increment and (2) how much active
action reduction are caused by adding the viscoelastic layer. The significance of this
combined effect is of course very much dependent on the VEM properties. Therefore, to
synthesize an ACL-based structure that can outperform both the purely passive and active
systems, a thorough analysis on how the viscoelastic materials will influence the passive
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Figure 1. Cantilever beam with partially covered active constrained layer actuator: -, piezoelectric layer; ,
viscoelastic layer.

damping and active action authority is needed. This effort will provide more understanding
and physical insight to the problem, and further provide guidelines to ACL designers.
Despite its importance, such a task had yet to be done. The goal of this research is to
perform such an analysis and identify the important VEM parameters that will affect the
aforementioned two factors, the passive damping ability and the active control authority,
and their combined effects on structural controls.

3. SYSTEM DESCRIPTION

For the purpose of discussion, a cantilever beam with a partially covered active
constrained layer is used to illustrate the concept (Figure 1). The piezoelectric cover sheet
is connected to an external voltage source as the control input.

A finite element model has been developed for the system based on the following
assumptions: (1) The rotatory inertia is negligible. The shear deformations in the
piezoelectric layer and the beam are negligible. (2) The transverse displacement w(x, t) is
assumed to be the same for all layers. (3) Young’s modulus of the VEM is negligible
compared to those of the elastic and piezoelectric materials. (4) Linear theories of elasticity,
viscoelasticity, and piezoelectricity are used. (5) There is perfect continuity at the interfaces,
and no slip occurs between the layers. (6) The applied voltage is assumed uniform along
the beam. (7) The density and thickness are uniform over the beam.

3.1.  

The geometry and deformation of the sandwich beam is shown in Figure 2. Let the axial
displacements of the neutral axis of the piezoelectric layer, the VEM, and the beam be uc ,
us , and ub , respectively. The subscripts c, s, and b refer to the piezoelectric constraining
layer, the viscoelastic shear layer (VEM), and the beam, respectively. Here, w denotes the

Figure 2. The geometry and deformation of a sandwich beam.



   321

transverse displacement. A full list of symbols appears in the Appendix. From Figure 2,
the shear strain b of the VEM is

b= 1w/1x−c, (1)

where c is the rotational angle of the VEM layer. For perfect bonding conditions, one
can further derive the kinematics relations

us = ub −(tb /2) (1w/1x)− (ts /2)c, uc = ub −(tb + tc )/2 (1w/1x)− tsc. (2, 3)

3.2.      

For one-dimensional structures with uni-axial loading, the constitutive equation of the
piezoelectric materials [19] can be written as

$t

E%=$ CD
11

−h31

−h31

bS
33 %$ o

D%, (4)

where D is the electrical displacement (charge/area in the beam vertical direction), E is the
electrical field (voltage/length along the vertical direction), o is the mechanical strain in the
x direction, and t is the mechanical stress in the x direction. CD

11 is the elastic stiffness, bS
33

is the dielectric constant, and h31 is the piezoelectric constant. Based on the above
constitutive equation, and assuming D is constant along the piezoelectric layer thickness
for thin materials, one can derive the potential energies of the piezoelectric layer and the
beam to be
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where Ic and Ib are the moments of inertia about the neutral axis of the piezoelectric layer
and the beam, respectively. H is the Heaviside’s unit function. The other parameters are
defined in the nomenclature.

The kinetic energies of the beam, the VEM layer, and the cover sheet (Tb , Ts , Tc

respectively) are represented as
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All parameters used in the above equations are defined in the nomenclature.
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3.3.  

For one-dimensional systems, the constitutive equation for viscoelastic materials can be
represented in the Stieltjes integral form [20]

t(x, t)=G ) b0g
t

−a

G(t− t)
1b

1t
(x, t) dt, (10)

where G(t) is the relaxation function of VEM (the stress response to a unit-step strain
input). This stress relaxation represents energy loss from the material, hence damping. The
virtual work done by the viscoelastic layer is therefore

dWs =−g
L

0

As (G ) b) db[H(x− x1 )−H(x− x2 )] dx. (11)

The virtual work done by the applied voltage is

dWc =g
L

0

bV(t) dD[H(x− x1 )−H(x− x2 )] dx. (12)

The virtual work done by the external disturbance force is

dWd =g
L

0

f(x, t) dw(x, t) dx. (13)

3.4.   

The finite element method (FEM) [21] is used to convert energy and work
equations (5–13) into forms of global nodal displacements through matrix assembly of
the elements. The local shape functions are chosen to be cubic polynomial in x (for
transverse displacement w) and linear polynomial in x (for axial displacement ub and shear
angle b). During the discretization process, the Golla–Hughes–McTavish (GHM) method
[22, 23] is employed to analyze the Stieltjes integral in the time domain [17, 18]. The
detailed development of the model can be found in reference [24]. The total number of
elements used in the analysis presented in this paper is ten. This includes a combination
of two (left plain beam region), five (ACL sandwich beam region), and three (right plain
beam region), as illustrated in Figure 3. The elements are of equal length within each
region.

Figure 3. Finite element model of beam with partially covered ACL (constraining layer identification as in
Figure 1).
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Using Hamilton’s principle, one can construct

g
t2

t1

[dTb + dTs + dTc − dEb
P − dEc

P + dWs + dWc + dWd ] dt=0. (14)

With the kinematics relations (1–3), one can derive the discretized time-domain model:

Mq̈+Cq̇+Kq= fc + fd , (15)

where q, q̇, and q̈ are vectors of nodal displacement, velocity, and acceleration. M, C, and
K are the mass, damping, and stiffness matrices which are symmetric. In addition, fc and
fd are vectors representing the control and disturbance forces, respectively. In the above
formulation, the internal structural damping is also included via Rayleigh damping, which
is of the form Cb = âMb + b
 Kb . Here, Mb and Kb are submatrices of M and K, respectively,
from which the parts corresponding to the GHM dissipation co-ordinates are excluded.
Constants â and b
 can be determined from experiments [21].

The discretized equation can be placed in the standard state-space form:

ẋ=Ax+Bu+B
 ud , y=Co x, (16, 17)

where A is the system matrix, B is the control matrix, B
 is the disturbance matrix, Co is
the output matrix, and ud is the disturbance input vector. The state vector x and control
input u are defined by

x=[qT q̇T]T, u=V(t). (18, 19)

By removing the VEM layer parameters, a model for the purely active configuration with
similar procedures has also been derived [24].

3.5.  

To validate the finite element models described in the previous section, laboratory
experiments have been performed. Figure 4 illustrates the experimental setup. Two
cantilever beam specimens are constructed: one is an ACL-based structure, the other is
a purely active configuration (direct application of the piezoelectric layer on the beam
without the VEM). Other than the VEM layer, both specimens have the same materials
and dimensions. The actuator layers are bonded to the aluminium beams
(261·6 mm×12·7 mm×2·286 mm) at 27 mm from the fixed end. The piezoelectric cover
sheet (101·6 mm×12·7 mm×0·762 mm) is made of PZT ceramics (PKI 502). A
well-known viscoelastic material, 3M ISD 112, is used for the damping layer
(101·6 mm×12·7 mm×0·254 mm).

To test their open loop frequency responses, the beams are excited by the actuators with
white noise inputs. The beam vibrations are measured using a non-contact displacement

Figure 4. Schematic of experimental setup.
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Figure 5. Frequency response of ACL system: ——, FEM; — —, experiment.

Figure 6. Frequency response of purely active system: Key as for Figure 5.

probe (PHILTEC, Model A88N1) located 2 mm from the free end, and processed through
a signal analyzer (HP 35665A).

Figure 5 shows the ACL-based structure’s frequency response function (measured
displacement over input voltage). The frequency response of the purely active
configuration is illustrated in Figure 6. Analytical results obtained from the finite element
models are also shown in the figures. The system parameters used in this study are
summarized in Table 1. It is illustrated that the analytical predictions match the
experimental data closely. These experiments demonstrate the validity of the models.

4. ANALYSIS AND DISCUSSIONS

To evaluate the active–passive hybrid actions, an analysis has been carried out on the
beam structure model described in the previous section. The system parameter values used
are given in Table 1 unless stated otherwise. In the following sections, the GHM
parameters will first be related to the physical properties of the viscoelastic materials, and
then the significance of these variables on the system’s passive damping ability, active
action authority, and their combined effect discussed.
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T 1

System parameters

â 0·64 R 1 k (Pa) 5×105

b (mm) 12·7 tb (mm) 2·286 bs
33 (V2/N) 3·94×107

b
 1·2×10−6 tc (mm) 0·762 rb (kg/m3) 2700
CD

11 (N/m2) 7·40×1010 ts (mm) 0·25 rc (kg/m3) 7600
Eb (N/m2) 7·1×1010 x1 (mm) 27 rs (kg/m3) 1250
h31 (V/m) −6·73×108 x2 (mm) 128·6 v̂ (rad/s) 10 000
L (mm) 261·6 a 6·0 z
 4·0

4.1.     

The GHM method [22, 23] represents the material modulus function as a series of
mini-oscillator terms in the Laplace domain:

sG	 (s)= k$1+ s
n

r=1

ar
s2 +2z
 r v̂r s

s2 +2z
 r v̂r s+ v̂2
r%. (20)

The factor k corresponds to the equilibrium value of the modulus—the final value of the
relaxation function G(t). Each mini-oscillator term is a second order rational function
involving three positive constants {ar , v̂r , z
 r }. These constants govern the shape of the
modulus function over the complex s-domain.

Consider a single-term GHM expression:

sG	 (s)= k$1+ a
s2 +2z
 v̂s

s2 +2z
 v̂s+ v̂2%. (21)

This modulus function, when evaluated along the imaginary axis of the s-plane, yields the
complex modulus

G*(v)0 ivG	 (iv)=G1 (1+ ih). (22)

With equations (21) and (22), the shear (storage) modulus G1 (v) and material loss factor
h(v) can be derived as

G1 (v)= k$1+ a
v4 + (4z
 2 −1)v̂2v2

v4 +2(2z
 2 −1)v̂2v2 + v̂4%, (23)

h(v)= a
2z
 v̂3v

(1+ a)v4 + [4(1+ a)z
 2 −1]v̂2v2 + v̂4. (24)

Figures 7 and 8 illustrate the relations among the shear modulus, loss factor and the GHM
parameters. Figure 7 shows the shear modulus for different k over the frequency range
from 1 to 10 000 rad/s. Note that the shear modulus is proportional to k. Figure 8 shows
the effects of a on the loss factor and shear modulus. It is interesting to note that larger
a corresponds to larger loss factor and shear modulus, while the effect changes with
frequency.
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Figure 7. The shear modulus for different k (a=1, v̂=1000 rad/s): k values; · · · · · , 5×107; ——, 5×106;
- - - -, 5×105 Pa.

4.2.  ( 1 )    ( 2 ) 

For broadband excitation considerations, one can assume the external disturbance to
be a zero-mean white noise process:

E[ud (t)]=0, E[ud (t)uT
d (t)]=Ud (t) d(t− t). (25, 26)

The system response will consist of a state vector with zero mean and a variance given
by the solution (Pl ) to the Lyapunov equation

APl +PlAT +B
 UdB
 T = 0, (27)

where

Pl =E[x(t)xT(t)]. (28)

The output covariance matrix can be written as

W=E[yyT]=E{[Co x] [Co x]T}=E{Co xxTCT
o }=Co E[xxT]CT

o =Co PlCT
o . (29)

In this research, covariance response to white noise is observed. A random disturbance
with variance (2·5×10−5) is applied to the beam at the free end and the output y is chosen
to reflect the beam tip displacement.

To investigate the system characteristics, one defines the standard deviations of the
output vibration amplitude and required voltage as J1 and J2 , respectively. Here, J1 is an
index representing the vibration suppression performance (the less J1 , the better the
performance) and J2 is an index representing the required control effort.

4.3.   

For the purely passive case (V(t)=0), define J1 = J1P . One then defines J1P0 to be the
J1P value for a case without VEM damping (by removing the GHM dissipation
co-ordinates, but still keeping the VEM stiffness modulus) and J1Pd to be the J1P value with
VEM damping. That is, J1P0 and J1Pd are obtained with the same system static stiffness for
given parameters. One then defines an index to quantify the VEM passive damping ability:

Ip =[(J1P0 − J1Pd )/J1P0 ]100. (30)

Here, (J1P0 − J1Pd ) can be viewed as vibration amplitude reduction due to contributions
mainly from the VEM damping. The Ip values versus k and a are shown in Figure 9. For
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Figure 8. (a) The material loss factor for different a (v̂=1000 rad/s), (b) the shear modulus for different a
(k=5×106 Pa, v̂=1000 rad/s): a values; · · · · · , 5; ——, 1·0; - - - -, 0·2.

a specific a, there exists an optimal k value for maximum Ip . For a specific k, the Ip

increases with increasing a. The major reason is that larger a corresponds to larger loss
factor of the VEM and thus provides larger system damping.

The Ip values versus k and ts are shown in Figure 10. Given a specific ts , there again
exists an optimal k value corresponding to a maximum Ip . For a specific k, the Ip first

Figure 9. Ip versus k and a (ts =0·25 mm)
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Figure 10. Ip versus k and ts (a=1).

increases as ts increases from zero (without VEM layer), but will start to decrease with ts

for sufficiently large ts . In other words, for given material properties, there exists an
optimal VEM thickness corresponding to the maximum passive system damping. These
observations are consistent with those in previous PCL studies [25, 26].

4.4.   

To examine the active action authority of various configurations, the structure is
statically deformed by the actuator with DC voltage input. The beam deflection at the free
end is further transferred to an equivalent point load (transmitted force) by multiplying
it by the equivalent beam stiffness at the tip. Given the same input voltage, larger
transmitted force indicates higher authority of the active action. The transmitted force per
input voltage is then normalized with respect to that of the purely active system, which
is defined to be Ia . Here, Ia is an index to quantify the active action authority, which is
expressed as

Ia =(XV /XF )/(XV/XF )PA , (31)

where XV is the static beam deflection at the free end when unit DC voltage is applied to
the actuator, and XF is the beam tip deflection when a unit static force in the transverse
direction is applied to the beam at the free end. The subscript PA refers to the purely active
system.

The Ia values for different k are plotted against ts in Figure 11. It should be noted that
the purely active system is the case with ts =0. From the figure, one sees that Ia increases
with increasing k for the same ts (same offset). This shows that the VEM shear modulus
(proportional to k) is a key factor on the active action authority of the ACL configuration.
It is also illustrated that the Ia value for typical k’s (kQ 108 Pa) reduces significantly as
ts increases from 0. This phenomenon indicates that the active action is degraded by the
VEM layer. The reason is that the soft viscoelastic layer reduces the direct control
authorities being transmitted (transmissibility) from the piezoelectric actuator to the host
structure. For such cases, the active action authority decreases with increasing VEM
thickness even though the offset (the distance between the neutral axis of the beam
and that of the piezoelectric cover sheet) is increased. When k is very large (ke 109 Pa,
beyond the value of typical VEMs), the active action authority can be higher than that
of the purely active configuration (ts =0) due to the ‘‘offset’’ effects. The active action
authority does not vary with a because only the static beam deflection is considered
for Ia .
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Figure 11. Ia versus ts , with different k.

4.5.   

The Popov–Belevitch–Hautus (PBH) rank tests [27] are applied to check the system’
controllability characteristics. Using the parameters in Table 1, both the purely active and
the ACL-based structures satisfy the conditions in the PBH tests. This implies both systems
are controllable for the given configurations.

For the purpose of fair comparison among different cases, the optimal control theory
[28, 29] is used to determine the active control gains. To examine the system response under
broadband excitation, a stochastic regulator problem is formulated. The average cost is
given as

JS = lim
tf:a

1
tf

E$g
tf

0

(yTQy+ uTRu) dt%. (32)

Here, E[] is the expectation operator, Q and R are the semi-positive-definite and
positive-definite weighting matrices on the outputs and control inputs, respectively. Since
one wants to focus on the actuator characteristics in this paper, full-state feedback is
assumed. The control law is given by

u=−Kcx (33)

with control gain Kc =R−1BTP. Here, P satisfies the algebraic Riccati equation

ATP+PA−PBR−1BTP+CT
o QCo =0. (34)

The closed-loop system thus becomes

ẋ=(A−BKc )x+B
 ud =Aclx+B
 ud . (35)

4.6. –  

From the discussions in sections 4.3 and 4.4, one sees that the VEM parameters can have
significant influence on both the passive damping ability and active action authority of the
ACL treatments. The major interest now is to study the VEM parametric effect on the
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Figure 12. Iap /J2 versus k and a for Q=109 (ts =0·25 mm).

overall system performance combining the active and passive actions. To investigate this,
one defines an index Iap ,

Iap =[(J1P0 − J1 )/J1P0 ]100. (36)

Here, (J1P0 − J1 ) can be viewed as the vibration amplitude reduction due to contributions
from the combined active–passive hybrid actions. (Iap /J2 ) thus represents the vibration
suppression ability per control effort, which indicates the effectiveness or efficiency of the
active–passive hybrid actions (closed loop system).

The Iap /J2 values versus k and a for three different weightings are plotted in
Figures 12–14. One sees that Iap /J2 decreases as Q (demand on vibration suppression
capability) increases, given the same k and a. With small or medium Q (indicating less
demand on performance), the overall index Iap /J2 is affected by both the passive damping
ability and active action transmissibility. Therefore, Iap /J2 has maximum values in the
regions corresponding to large a and certain optimal k (see Figures 12 and 13). With large
Q (indicating high demand on performance), it is shown that the larger k the better
(Figure 14). This indicates that the passive damping ability from the VEM is not large
enough to make any major contributions to the result. In other words, Iap /J2 is dominated
by the active action effect such that the higher the transmissibility (active action authority)
the better.

The Iap /J2 values versus k and ts for two different weightings are plotted in Figures 15
and 16. With smaller Q (Figures 15), the overall index Iap /J2 is dominated by both the
passive damping and active action authority (transmissibility) effects, which has maximum

Figure 13. Iap /J2 versus k and a for Q=1010 (ts =0·25 mm).
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Figure 14. Iap /J2 versus k and a for Q=1011 (ts =0·25 mm).

Figure 15. Iap /J2 versus k and ts for Q=109 (a=1).

values in the range corresponding to certain optimal k and ts values. It should be noted
that the line corresponding to ts =0 represents the purely active case. One can see that
the Iap /J2 in the optimal range is larger than the active case Iap /J2 , which indicates that
the ACL design could outperform the purely active structure. However, the ACL system
could also be worse than the purely active case if one is not careful (the range in which
the ACL Iap /J2 surface is lower than the zero VEM thickness line). On the other hand,

Figure 16. Iap /J2 versus k and ts for Q=1011 (a=1).
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one needs significantly large k to outperform the purely active case with higher Q
(Figure 16). This is again because that the passive damping effect is not significant enough,
and the results are dominated by the active action. Therefore, the transmissibility becomes
the major issue.

4.7. 

From the analysis presented in this paper, some guidelines for ACL designs are
summarized in the following paragraphs.

(1) It is desirable to let the VEM loss factor (directly related to the a value) be as large
as possible to obtain good passive damping abilities and active–passive hybrid actions in
ACL designs.

(2) The VEM shear modulus can be categorized as having three regions: low, medium,
and high. In the low shear modulus region (e.g., kQ 105 Pa in the given example), both
the passive damping ability and active action authority (transmissibility) are low for the
ACL structure, and therefore the overall performance of the active–passive hybrid system
is poor. One should avoid using VEM in this region while designing ACL structures.

(3) To obtain large vibration reduction with high demand on performance (little concern
of control effort), high active gains (high weighting on performance) are usually used. In
such cases, one could select VEM with high shear modulus (e.g., 108 PaQ k in the given
example) to achieve high transmissibility of the active actions. However, the differences
between the ACL and the purely active configurations might not be very obvious
(Figure 16). Another point worth noting is that when k becomes too large, the passive
VEM damping could become ineffective (Figure 9), and the ACL’s fail-safe ability (which
is a desirable feature of such active–passive hybrid structures) could be significantly
reduced.

(4) To achieve good vibration reduction performance with significant constraints on
control effort, the active gain values (weighting on performance) are usually limited. This
is the best scenario for applying ACL, where the benefits of both the passive damping and
active action could be obtained. In this case, one should choose the VEM shear modulus
in the medium region (e.g., 105 PaQ kQ 108 Pa in the given example). Generally, this is
the most useful region for ACL designs. Also in such designs, there exists an optimal VEM
thickness which corresponds to the maximum hybrid active–passive actions in ACL
systems. Usually, this optimal thickness value is small compared to those of the main
structure and the piezoelectric layer, which makes such configurations quite achievable.

5. CONCLUSION

From the results presented in this paper, it is clear that several additional factors need
to be considered in an ACL design versus a classical PCL design. These extra factors
include the control gains and the VEM transmissibility. This study has identified the VEM
parameter regions that will provide satisfactory transmissibility of the active actions, and
have overall results outperforming both purely passive and active systems. While this
investigation is helpful in setting up guidelines for ACL designers, it also illustrates that
the VEM design space is more limited for ACL than PCL. Also, since VEM properties
vary significantly with temperature and age, an original effective design with sufficient
transmissibility could become much less effective as operating condition changes. Based
on these arguments, it will be desirable if one can develop means to reduce the VEM effect
on active action transmissibility, while retaining the passive damping ability in the ACL.
This could increase the design space for VEM selections, and enhance the ACL’s overall
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active–passive combined performance and robustness. A new idea has recently been
developed [24, 30, 31] for such purposes, which could be a good direction for future
research.
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APPENDIX: NOMENCLATURE

A open-loop system matrix
Ab , Ac , As cross sectional area of beam,

piezoelectric layer, and VEM, re-
spectively

Acl closed-loop system matrix
B control matrix
B
 disturbance matrix
b width for beam, piezoelectric layer,

and VEM
C damping matrix
Cb Rayleigh damping matrix
Co output matrix
CD

11 Young’s modulus of piezoelectric
materials with open circuit

D electrical displacement
E electric field
Eb Young’s modulus of beam
E[] expectation operator
fc control vector
fd disturbance force vector
G relaxation function of VEM
G* complex modulus of VEM
G1 shear modulus of VEM
h31 piezoelectric constant
Ia index of active action authority
Iap effectiveness index of active–passive

hybrid actions
Ib , Ic moment of inertia of beam and

piezoelectric layer
Ip index for passive damping ability
J1 index of vibration control perform-

ance
J2 index of required control effort
Js cost rate
K stiffness matrix
Kc control gains
L beam length
M mass matrix

Q weighting matrix on output
q displacement vector
R weighting matrix on control input
t time
tb , tc , ts thickness of beam, piezoelectric

layer, and VEM, respectively
u control input
ud disturbance input vector
ub , uc , us axial displacement of beam,

piezoelectric layer, and VEM, re-
spectively

V applied voltage
W output covariance matrix
w beam transverse displacement
x position co-ordinate along beam

length
x state vector
x1 left end of ACL
x2 right end of ACL
y output vector
a weighting on GHM dissipation

co-ordinate
b shear strain of VEM
bs

33 dielectric constant of piezoelectric
materials

o mechanical strain of piezoelectric
materials

z
 damping factor in GHM dissipation
co-ordinate

h material loss factor of VEM
k final value of G(t)
rb , rc , rs mass density of beam, piezoelectric

layer, and VEM, respectively
t mechanical stress
c rotational angle in VEM
v̂ natural frequency in GHM dissi-

pation co-ordinate


